
1. 课程内完成：OJ系统的F~N题

2. 提交要求：提交如图所示的截图，截图右上角必须包含你的学号信息

题目：任意进制转换器（详细要求见下文）

完成奖励：

晚上9点前完成：可找我检查并提前离开

晚上9:15前完成：平时成绩总分加0.5分（加满为止）

请补全以下 C 程序，实现 将一个给定进制的正整数字符串转换为另一个进制的字符串表示。程序需支持 2 到 16 进制 之间的相互转换，其中数字 10~15 用大写字母

'A' 到 'F' 表示。

你将实现多个辅助函数，并最终通过 Base2Base 完成整个转换流程。

为降低难度，以下两个函数已给出，供你参考和调用：

C语言实验四：函数和控制结构

必做题要求

选做题要求

📝 选做题：任意进制转换器

🎯 任务目标

🔧 已提供函数（可直接使用）

// 将字符 '0'-'9','A'-'F' 转换为对应的整数值（0~15）

// 若字符非法（如 'G', 'z'），返回 -1

int Char2Int(char ch)

{

 if (ch >= '0' && ch <= '9')

 return ch - '0';

 switch (ch)

 {

 case 'A': return 10;

 case 'B': return 11;

 case 'C': return 12;

 case 'D': return 13;

 case 'E': return 14;

 case 'F': return 15;

 default: return -1;

 }

}

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

💡 注意：输入字符串中只包含合法的大写十六进制字符（即 '0'-'9' 和 'A'-'F' ），但你的程序仍应能处理如 "0" 、单字符等边界情况。

请根据注释完成以下函数的定义：

要求Reverse函数除数组长度变量外不得开辟新的内存。

⚠️ 假设输入数据合法： 2 ≤ base_from, base_to ≤ 16 ，且 num_from 是有效的 base_from 进制非负整数（长度 ≤ 10）。

整个转换过程分为三步：源进制 → 十进制 → 目标进制。

// 计算字符串长度（不使用 string.h）

int Strlen(char *str)

{

 int i = 0;

 while (str[i] != '\0')

 i++;

 return i;

}

19

20

21

22

23

24

25

26

📦 需要你实现的函数

char Int2Char(int d); // 将 0~15 转为 '0'-'9' 或 'A'-'F'

int Power(int base, int exp); // 计算 base^exp（exp ≥ 0）

int Base2Dec(int base, char *num); // 将 base 进制字符串转为十进制整数

void Dec2Base(int num, int base, char *converted); // 十进制转 base 进制（低位在前）

void Reverse(char *str); // 反转字符串（原地操作）

void Base2Base(int base_from, int base_to, char *num_from, char *num_to);

1

2

3

4

5

6

主函数逻辑（已给出，无需修改）：

int main(void)

{

 int base_from, base_to;

 char num_from[11];

 char num_to[11];

 scanf("%d %s %d", &base_from, num_from, &base_to);

 Base2Base(base_from, base_to, num_from, num_to);

 printf("%s\n", num_to);

 return 0;

}

1

2

3

4

5

6

7

8

9

10

11

🔄 转换流程图

💡 关键点： Dec2Base 生成的是低位在前的字符串（例如 10 转二进制得到 "0101" ），必须通过 Reverse 得到 "1010" 。

✅ 建议：先手动计算几个例子，再调试程序。

开始

base_from, num_from,
base_to

Base2Dec: 转换为十进制

Dec2Base: 转换为目标进制
（低位在前）

Reverse: 反转字符串得到正
确顺序

num_to

结束 mermaid

🧪 测试用例（请确保你的程序能通过全部）

输入（base_from num_from
base_to）

期望输出 说明

1 10 123 2 1111011 十进制转二进制

2 2 1111 10 15 二进制转十进制

3 16 1A 2 11010 十六进制转二进制

4 8 77 16 3F 八进制转十六进制

5 10 0 2 0 边界：零值

6 2 0 16 0 零在任意进制都是 "0"

7 16 F 10 15 单字符输入

8 3 222 10 26 三进制验证（2×9 + 2×3 + 2 =
26）

9 10 255 16 FF 十进制转十六进制

10 16 0 10 0 再次验证零

尽管上述代码“能工作”，但它仍存在若干设计缺陷和安全隐患。请思考以下问题：

1. 错误处理缺失：如果输入字符串包含非法字符（如 'G' ）或某位数字 ≥ 当前进制（如在八进制中出现 '9' ），程序会如何表现？应如何改进？

2. 数值溢出风险：当前使用 int 存储十进制值。若输入是 16 位十六进制数（如 "FFFFFFFF" ），会远超 int 范围（通常最大约 21 亿）。如何避免？

3. 缓冲区安全： num_to 数组大小为 11，是否足够？例如，将 2 进制 "1111111111" （10 个 1）转为 16 进制只需 3 字符，但反过来呢？是否存在写越界风险？

💡 提示：健壮的程序不仅要“正确”，还要“安全”和“容错”。

提交代码和所有测试例的运行截图。

⚠️ 已知缺陷与思考题（仅思考即可）

📎 提交要求

💡 提示（尽量先自己思考，若毫无思路再参考以下流程图）

Base2Dec 函数流程图

是 否

开始

初始化 result=0, exp=0

计算 len = Strlen num

i = len - 1

i >= 0?

digit = Char2Int num i

result += digit * base^exp

exp++, i--

返回 result

结束

mermaid

Dec2Base 函数流程图

是 否

开始

初始化 i=0

num > 0?

converted i = Int2Char
num % base

i++

num = num / base

converted i = '\0'

结束

mermaid

